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VARIANCE REDUCTION USING NONLINEAR
CONTROLS AND TRANSFORMATIONS

Peter A. W. Lew--
Richard L. Ressler

R. Kevin Wood

Department of Operations Research
Naval Postgraduate School

Monterey, CA 93943.

August,15 1988

Abstract

Nonlinear regression-adjusted control variables are investigated for improving variance
reduction in statistical and system simulations. To this end, simple control variables are
piecewise sectioned and then transformed using linear and nonlinear transformations. Opti-
mal parameters of these transformations are selected using linear or nonlinear ieast-squares
regression algorithms. As an example, piecewise power-transformed variables are used in the
estimation of the mean for the two-variable Anderson-Darling goodness-of-fit statistic W.
Substantial variance reduction over straightforward controls is obtained. These parametric
transformations are compared against optimal, additive nonparametric transformations ob-
tained by using the ACE algorithm and are shown, in comparison to the results from ACE,
to be nearly optimal.

1 PRELIMINARIES

lThi paper investigates the use of possibly nonlinear, regression-adjusted control variables
for variance reduction in statistical and system simulation. Let C be a vector of control variables
,vhich are correlated with (related to or associated with) a statistic of interest, Y. and assume
that (' has a known mean vector E[C]. The object is to more accurately estimate E[Y] by

deriving a controlled statistic Y' which has less variance than Y. A standard method for doing
this is via the linear, additive combination of Y and the components of C,

y, = -T( E [])



I'li i)iai. (1vector .1 is a vector of unconstrained constants which are to Ibe chosen so as to

I!,iiniiiii the( varianice of P. Note that some components of C may be known power transfor-

11ions of other components, so that polynomial control schemes are included in formulation
I x!lici expiressions for the components of 0 which minimize the variance of Y' can be

foiriid in terms of Ihe second order moments of 1' and C, and with these parameters, Y' is an
iwiiised est imate of ],, [1].

In particilar, consider the case of a single, additive, linear control Y' =1Y - 13 (C - E [C].
Heroe. is cliosen to ini nimize z'arP). This variance is minimized when 3 is proportional to the
cor r.lat ion betweent Ci and Y: the greater the correlation, the greater the effectiveness of the
colit To) inl oht ailing variance reduction. Assuming var(Y ) = var(C), the result follows from:

rar) F) =rar( F) +- j
2 ar(C) - 23coi'(Y, C)

= var(Y7) ( I + 32 - 213p(Y. C) )

lii!r'ii at i rgWili respeci to I1 and setting the resulting expression equal to zero yields the

rar(Y ) - ar(Y ) 0 1 _ v r ) = 1 O ~ , 3

a r (I' var(Y')

Oi:tlv ptrcent variance redurct ion resulting from the control. Wit hout the assunmpt on1

vMii)Vri;iiicos. we hv

( -p1" C).
(r0

wile (2) still holds. Thuiis if )()F, C). ay , and ac. are known, p(Y. C) is a direct mevasure of

tie variaii e r( duit tot which can he obt ained with a single regression adjusted control. Iui fact
C(!jiarinrg correlat ions is a method for choosing between proposed controls.

J ik pa ;wr generalizes ( I ) by letting

1' = 1, - C', (4)

wheore C' is an 'y mevan-zero linear or nonlinear parametric function of the components of C. i.e.
(..f(P j <[(:~1 For example, C' might involve additive or multiplicative combi-

11iat ionis o, 11InSpeciheod power transformations of the components of the original control vector C.
Opt littal or Iiear-olpt inial values of the unknown parameters of these transformiations, analogous
14) 1t in ( I ), are obtained by mninimnizing the variance of Y'. Hlowever, the results are not explicit
ft it loris of thle joint and] higher moments between Y and the set of control variables.
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Now f-r thi- more general case of multiple, possibly nonlinear, control variables we obtain.

using (4),

var I' = 1 + - (Y) - 2-C(Y'C')y (5)

S1+ k- 2kp(Y,C')

and

1 - vr(Y) = 2kp(Y, C') - k2  (6)var(Y) - 6

where k is positive valued. While this last equation is simple in form, both p(YC') and
k = ac,/ay are functions of the parameters in C'. Thus it is not true that in order to ma.dmize
the variance reduction with respect to the parameters of the control function, one need oniy
maximize the absolute value of the correlation between Y and C'.

When C' is a linear additive function of the components of C as in (1), p(Y,C') is a
quadratic function of the parameters 3 whose optimal values are a function of the correlation
matrix of (", C), i.e. the joint and higher moments between Y and the set of control variables.
In fact, explicit expressions for the optimal values of f are known (Rubinstein and Marcus,
1985). As an example, for two independent linear controls with known correlations with Y, it
follows from (5) that with the optimal values of 0,

rar() 1 - p(Y,C) 2 
- P(Y, C 2 )2 . (7)

Choosing control variables with maximum correlations with Y will, in this case, still maximize
the reduction in variance.

In the general case (4), when the controls are not independent, and ac,/ay, $ p(YC')
in (5), p(Y.C') does not yield an exact measure of variance reduction as does p(Y,C) in (3).
Additionally, the allowable range of parameters may be constrained in the function which
generates C" out of the components of C by the requirement that E[C'] must be known.
exactly or approximately, and must be finite.

2 THE ACE PROGRAM

The ACE (Alternating Conditional Expectation) program (Breiman and Freidman, 1985)
provides a method for estimating the minimum variance obtainable by regressing a variable
Y on an additive combination of arbitrary transformations of another set of variables such as
the components of C. As such it suggests that in a simulation context, more control (more
variance reduction) can be obtained with transformations of the chosen control variables. ACE
estimates transformation functions 0(Y) and Vbj(Cj) to minimize the fraction of the variance of
I nct explained by regression (e 2 ) defined as follows:

r

SE [(o(Y) - FP- I ,(c)j 
(E [0"2 (Y)

OON L. Dlst r but oD/

Av .&bln', Coros

AvnI.! alld/or

Dist Specialt



The algorithm uses conditional expectations and alternates between improving the estimate of
O(Y) and improving the estimates of the Vp1(Cj)s. The computational mechanics on finite data
sets of continuous variables involve the use of data smooths to approximate the conditional
expectations in order to repeatedly reduce the mean squared error until it is minimized.

The ACE procedure is nonparametric, with the transformations selected solely on the ba-
sis of the data sample. Minimal assumptions about the distribution of the sample or about
allowable transformations enable ACE to produce an estimate of the minimum mean squared
error between the transformed Y variable and the sum of the transformed components of C.
When C has only one component, this is equivalent to maximizing the correlation between a
transformed Y and a transformed C.

Unfortunately, the transformations ACE selects cannot be used to develop control variables
for variance reduction since the transformations are non-parametric and the true means of
the transformed variables cannot be determined. However, one can use the minimum mean
sq,, red error from ACE to obtain an upper bound on the varip.p-p reduction that can be
achieved between Y and C' in a parametric control function such as (.1). Thus, ACE may be
used to gauge the effectiveness of any control function using a fixed set of control variables.
Since (4) does not allow for transformations of the dependent variable, ACE was intentionally
limited duriig this study to using only linear transformations of I.

3 THE SAMPLE ANALOG TO THE VARIANCE REDUC-
TION FORMULA

In practice, one has no theoretical information about the joint probability properties of Y
and (", or the joint probability properties of Y and the components of C. Instead one has a
simulation sample of size 7n of independent replications, {IC} i =. m, from which to

estimate F [Y]. Regardless of whether the sample is large or small, i.e. is a pilot sample or all
of the simulation data that will be available, one wants to maimize the sample variance of Y'.
Minimizing th -ample variance involves, after subtracting Y from both sides of (4), minimizing

z~m1 ( :- ( - V- Cr2
22 = (9)

Fm__ ( _ F--Iq 2_ /
M nmI _ , I+ _, - .-- t (10)

The left-hand side of (9) is the quantity to be minimized as E [V1 = E E[[Y]s
miniized £ K = F[i" = £[Y]since

1< [C'] is known to be zero. Thus either Y or T- can be used in the estimate of t lio variance
of P'. Equation(9) shows that this estimate of the variance of Y' is equal to the residual
sum of squares of the least squares regression of Y, - i7 on (". Equation (10) involves, in its
first term, the total sum of squares, which estimates the variance of Y; in its second term the
sample variance of the zero mean C'; and in the last term the sample covariance of Y and C'.

4



Rearranging terms in (10), we have

1  -( r) 2 - , - 2) z :_-i - ) m, 22
n? m m 771

or

Z~ I i; - 7)2 ~ i(, - )2 2Z 'ht(= 1 ,, _ V )1 c 2 ' (

The left-hand side of (11) is the usual R 2 regression measure and equation (11) may be rewritten

as2 
SC 

-2=2 - ' (YC') -S 2k r(Y,C') - (12)

As the sample analog to (6), (12) indicates that maximizing R 2 through nonlinear least-

squares regression is equivalent to maximizing sample variance reduction when the optimal

parameters are unknown. Thus for C with multiple components, maximizing the effectiveness

of C' can be accomplished through estimating the parameters of C' via multiple least-squares

regression of Y' - Y on C' . A similar result relating optimal regression and optimal correlation
can be found in the ACE article (Breiman and Friedman, 1985).

With linear controls, linear least-squares regression will provide a global minimum for the

residual sum of squares, in turn maximizing the variance reduction for the sample. When the
control function is nonlinear, nonlinear least-squares regression will not necessarily determine
parameter values which globally minimize the residual sum of squares since the function could be

nonconvex. With a control function C' = f (C; ) - E [f(C; Q)] that is nonconvex, there may

be many suboptimal local minima. In this case the choice of initial values for the parameters 3
in the nonlinear regression may significantly affect the amount of variance reduction obtained.
If one uses as starting values for 3 the special values which represent the linear case for the

control, one should always do at least as well as the linear case regardless of nonconvexity.

One must be careful that while multiple regression may be computationallv useful, the
distrihiion theory behind multiple regression, which assumes fixed independent variables. does

not apply. Consequently, confidence intervals on parameter estimates cannot be determined

directly from the regression results.

4 APPROXIMATING OPTIMAL NONLINEAR TRANS-
FORMATIONS FOR NONLINEAR CONTROLS

Since ACE does not supply any parametric clue to the optimal transformations of the indi-

vidual components of C, approximations are needed for these transformations. A requirement
for the approximations is that they contain the linear additive case (I) as a special set of pa-

rameter values, thus ensuring that one attains at least the known variance reduction for tis
case. The approximations studied here take two forms, piecewise linear controls, and standard

statistical parametric transformations, used separately or conjointly on each component of ('.



4.1 Piecewise Linear Transformations of Controls

Statistics are often nonlinear functions of the random variables from which they are de-

rivel. Therefore one might expect some nonlinear controls to have a higher correlation with
Y than linear controls. While not a measurable guarantee of improved variance reduction, (0)
suggests that higher correlation indicates that a nonlinear control may be able to be a better
"'control" than the linear controls. Given an initial guess at a viable linear control, one type of
nonlinear control can be formed by using indicator functions and "cutpoints" to form piecewise
linear transformations of the control. Graphical analysis can be useful in selecting the inilial
cutpoint(s).

Vor example, a control variable (' is split into two control variables about a cutpoint b as

follows:

CI C if(I<6 and -, C if C> b
0 otherwise 0 otherwise. (1:3)

By judicious choice of the variable cutpoint h or perhaps multiple cutpoints, least-squares
nuliple regressioi, can achieve a better fit without the use of additional control variables. As
an example let X be distributed as an independent Uniform (-.5. .5) variate. Let Y = 2 + C

where ( is distributed as independent Normal (0, 0.01). With 300 samples, using just X as a

linear control as in (1). linear least-squares regression yielded an R2 of 0.00. However using X

to form two new controls as in (13). with 6 = 0, yielded an R 2 of .92 using linear least -squares
regression. If 6 - x or - -c, the ordinary linear control is obtainec, Of course, care must
be taken in determining the form of the control function to ensure it has mean zero, i.e. E {('1l
. . r/A . h~ k ,r ' als ,, 1 0- re ression is still linear if b is .glrt , but it

nonlinear otherwise. Finding an optimal 6 then becomes, in general, a nonconvex, nonlinear.
reatlieniatical programming problem.

4.2 Transformations of Controls

Several standard transformations are used in statisihth , - ., . z, . and th se ra;i

be applied to approximatiors for the optimal transformation of a control variable C. Power
transforniations of controls, in addition to piecewise transformations of cont rols, introduce
nonlinearity into the controlled estirna.te of E[Y] while containing the untransformed cotrol
as a special case. 'The power transformation used initially in this study is of the form Z =

.X" - 1)/p. for p > -1. This scaled power transformation has the property that as p - 0 th,
limil is Ih X and when 1 -- I it gives a shifted version of the original variable.

This power transformation can have vastly different effects for X > 1 and .X < I. The
curves in Figure 1 represent a sample of possible transformations. As one increases /. thle
change in ihe nature of the function on either side of X 1 becomes more drastic. For large
values of p. large values of X are given added veight while for small values of p). the small
\aluies of X are given the additional weight. Note that when p = 1, this is simply the linear
transformation. Thus optimizing using this transformation assures variance reduction at 1,ast
as good as in the linear case.
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Figure 1: Examples of Power Transformations of a Variable X.

Using, for example, the single control variable C, the resultinug nonlinear control function is

,, p= 5IP f

which ias two paraeters, p anpl 3. Of course, combinations of piecewise transformat ions and
power transformations are also possible, and it is this combination of nonlinear controls which is
the main thrust of this paper. With this combination one hopes to come close to the maximum
theoretical variance reduction which could be obtained.

5 AN EXAMPLE

Estimating the mean of the Anderson-Darling goodness-of-fit statistic, IV (Andersoi and

I)arling. 1952) provides a good example of the benefits of piecewise internal controls and power
transformations. The example is artificial since E [1fl,2] is known to be one for all n. and
the determination of the quantiles is the real problem. However, the example is useful as an
illust rat ion.
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T-, Stlsi W, i call be determined as a funcrtion of it inde pendent uinit ( xponen tial random01
variabhles V I -ei, an )av. 19R7). Note first that one call write IV, as a fu nction oif orde r
stt ititc, from a uni0t exponential dlist ribuition as follows:

it=i )- It (f') I(i l~n~ - rio 2+(n - i)+ 1I J, 1 IlI

wlier" the E, are the order statistics from a unit exponential populat ion. These order st at tc-

-all Iii tur n bie vex tfssedi in ternis of the n independent unit exponential random varia hips T,
'is

1-I her 1. I p aidi ( 1,5) give It'' as a function of n independent exponiential ranidomiv i~ns
11 ndependeice oIf these rantdomi variables makes themn ideal for cont rolling It' 'Ilie ~zp

2 is presenietl here, for which (7) holds with C, =FE and (C2 = 2 -

',~ nentiont-d before, graphical methods c'anl somtlimeils be useful in determninmg tvp', (0

rIs (r aspects of con titk. Two ulseful plots of 1j, are 1irsetiit(l( here,. l'iquire 2 ,t
-11face plo ()f It" o)vr a ,ivall re~gion of Ihle El, F 2 plane where thev majority of vaue ccuri

1 hi ie ao ;ilensit -v plot, ')iI a rep~resentation of the functional relationsip betwen tI( lie (
ifi('ilItiii expotirtials allid the 112 %-aluies each pair generates. Subsequent surface ph(t (d
tIw (ont rol fun( lt is li kewise dlo not portray densityv: just the surface genierated by' tie ci!

tuntion. Ar .s an indicator of thle density' of points onl thle 112 surface, Iigtire :1 Is a sail,1)1

hiv~triate !ij.,gratu of 1000 iridepetideri pairs oif utnit exponentlials. While One cotililp li
I' 11 llivariatv exlmiotial densit ' v the discree niatture of the histograni allows ese

(li "H) ri 4~ ti diteti sit . loget her. FiLiires 2 alid 31 indicate wht t iofiflear controls 11)i prt ,\7
Pii-if] ftr t(trtrrtllilig 11"2. (,1 arly the relationship itetweeni 11, 2  11,,11 anm. shglyltlii

in- gst hle uise 4t nonlinear colit rds. F~igture :3 supports onte's itntiion that the tiajit-1v f
pairs 4thle 1i6ariate e~xponient ial are close to the origin. Suispec-tiiig this oneo mlay he, tempitted

u()i.e a linear cent rol to tijst approximate the surface in t his region. Hlowever Figure 31 ak(e
'htws a signlihicaltu ittintilier (If lirs t hrotighout thle plane. Thus int order for C' to he ati

cof n e rt rol. lie eiit ire stirfate shouldI be applroxinmated bY the control. Thlis wtttll rettuni r
;t nittlitear tetttrtll and0 nitnlintear regressiont
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Six different lincar and nonlinear tontrol fmiw ions for estimating the mean of lI" ' were

evaluated using a single sample of 500 pairs of unit exponentials and their associated 11"

values. The experimental, APL-based (PAFSTAT, from IB1M Research. was used for all ofI he

computing. The following six control functions were compared:

C' =31 (E1 - 1)+- 2 (/2 - 1): (16)

1 - 2) +3, (2, - 2) 17)

C ~ ~ E P~ [il]:I

C'= -~ 3 J kP - Pi £ L - (2)

where

I'-, ('' E --1I + 3 2(E 2 - I + 13 --t -- -E [ -j +,,31 ,L -

W I[ 1>2 02

f¢,1 = 0 otherwise anP1E2 k = )3 otherwise j = 1.2:
" [ _ /" 1, '21

w here f 1and E:i2 0 £ j3 < -Aa
0 otherwise. = otherwise a

1' 1 Ea >h2 j= 1,2.0.; 2 0 otherwise

As expected, the simplest controls. (161 and (17). with straightforward control functions.

were usually less effective than the nonlinear controls. The controls give. by (16) and (17)

are referred to as he "standard" controls because their unknown parameters can be compulod

using linear least-squares regression. Since the necessary expected values of the controls j>

itivWved th first two molnonts of tle exponentials, they were determined anl- ht ically and not

I,timated. The remaining parameters for controls (16) and (17), respectively Ii and 3'. and
, 12. 1 : and ;1, were computed using linear least-squares regression. Since control (16) isI

iwnear function of F1ir and f.2 and W22 is a very nonlinear function of '. and E2, tli, control.

not surprisingly. achieved an R 2 of only .2265. This poor performiance could also be predictied

lv using the sample estimates for p(11, 2 , E ) and p(l iU,/ 2) in (7). If the estimates were the

10



true correlations, the optimal 13's would only yield a 22.66 percent variance ieductioi.. The

parabolic shape of (17), as shown in Figure 4, enabled tie control function to achieve an R2

of .5627. While better, it is far from optimal. Note that on the graphs of the c,rois the

predicted values of the controls are centered about zero, the mean of C'.

1.5
g)

-1.0

,0 1.0 1.5 2.

0..5
.0 0 ,

Figure 4: Surface generated by the parabolic linear coiitrol given in (17). The control is linear

since thle powers are fixed.

For control (.1.9) only the linear termis expected values could he calculated analytically. The
other two expectedl values were functions of the unknown parameters and had to be recalculatedl
basedI onl the current parameters during the optimization. For controls (18), (20), and (21)
nono of t hr f-xp)fcteol values could he determined analytically so all were calculated during the

op~timiizationl. All of the parameters for the nonlinear controls were estimated via the nonlinear
regression s(ogient of GilAlY.LV. For nonlinear regression, GRAFSTAT uses a form of thle
\Iarquadt algorit hin (MNarqiiadt , 196:3) which allows bounds to be placed onl the parameters.
Lower bound s of -.99 werk, necessary on the power parameters, Pjk, since the expected values
Of the exponentials (involving the gamma. function ) are not dlefined for P.k < -I. A reasonable
upper bound onl each Pjk w'as found useful in speeding convergence.

A\s the control fuiict ions 1)ecame more nonlinear, their effectiveness usually increased]. At\-
lowinig thle powers to float in control 1t 18) versus beinrg fixed in coiitrol (16) gave aslight imlprove-
mient : t he 1?2 wvent fromn .2265 upl to .46410. This was not as good however as t ie "standlard"
cont rol (17I) with two linear tormns aiid two quadratic terms which achieved anl Rt of .5627.

Adding the two linear terms to control (18) resulhed in control (19). Now allowing the powers

ofloat in control ( 19), versus being fixed in control ( 17), enablvd the surface t~o fit. more closely

"..ii he seen in Figure 5.

o 0 II
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-0.5
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Figure 5: Surface generated by "non-standard" control with linear and nonlinear terms given

in (19).

Originally, the cutpoints for controls (20) and (21) were parameters to be optimized. Unfor-

tunatelv, this made the optimization unstable and the results unreliable. Thus, the cutpoints

were fixed at selected quantiles and not included as parameters in the nonlinear regression.

Selection of a good cutpoint was done by examining the results of a short sequence of regres-

sions. For control (20) a cutpoint at the .5 quantile was the most effective one found for this

sample. ('omparing Figure 6 to Figure 5 shows the impact of adding nonlinearity by the use
of the cutpoint. The R 2 for control (20) was .8216. The results of using the estimated pa-

rameters for (20) on three independent samples of 1000, Table 1, indicate that even though

the regression-estimated parameters are biased for the original sample, (20) is still effective in
controlling other samples.

Sample 1 Sample 2 Sample 3

V .9882 1.0022 1.0219

s_- .0261 .0262 .0282

P- .9972 1.0095 1.0238

s .0110 .0124 .0129

R2  .8239 .7759 .7905

lable 1: Effect of the nonlinear, single-cutpoint control given in (20) oil three independent

samples other than the regression sample.

12
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Figure 6: Surface generated by the nonlinear, single-cutpoint control given in (20).

As the number of cutpoints increases to two for control (21), one gets a more effective
control at the cost of increased computational complexity. The computational complexity
increases because the additional cutpoint creates more parameters and because the computation
of expected valuos becomes more expensive. As before, the cutpoints were fixed at selected

quantile values. Which values to select was a matter of performing a series of regressions on a
grid of value s. Figure 7 shows that some pairs of cutpoints were better than others. Figure 8
shows that the best cutpoints for this sample on the grid examined, the .30 and .65 quantiles.
vield a control which is an excellent approximation to the 1'2 surface. The regression with
those citpoints on the original sample yielded an R2 of .8372.

This last control, (21), was then tested on independent samples and the R2 was compared
to results from ACE. Table 2 indicates the results for three samples of 1000 IV, values. Again
the 11" values are almost as good as the original sample, and the control is effective in all three
cases, ACE was given the data generated by using the cutpoints on the original sample as the
independent variables. The R2 value derived by ACE was .8560 showing that control (21) is
nearly optimal for the control variables used.
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Samiple I Sample 2 Sample :3
V .9534 1.0230 .9842
S). .02:30 .0265 .0255
Y' .9997 1 .0157 1.0001

___ 1 009 -. 0121 .0O110
I?2 A3_50 .7925 .8153

labhle 2: Fffect of tile nonlinear, doublle-c utpoint con trol gi vein in (21) on three independenit

sample ot her t hani thle sam pie uisedl for regression.

6 SUMMARY AND CONCLUSIONS

This Stull dvjlllollst rates the potential effectiveniess of nonlinear regression- adjusted controls

in redutin ng variance iii siimulat ions. Various pit-cewise li near and power transformiations were
>liowri1 to h~e useful inl (evelopifng cointrol functions. There are manyv questions vet to be answeredl

hlouigh . Sonie areas, of investigation are listed.

I i n ding cont-rcls for the va ri;-mrce. p~ercentiles and q iianti les of It" 2aC stiitblo conlt rol
funi nciionl is developed. cal Ii t he uised withI different parameters for ot her aspects of the

d a ta?"

2. Fintin g cwrlrots for It',' for o -> 2. As thie Iinmeiisioiiali t v increases, one may itot ineed
e1verY indeIPrudeIIt variable in the control function to get effect ive control. Measures of
nfluteilc, or leverage could p bs ) e usedl to redluce the size of thle cointrol ftiic tion.

31. I'sirg o ther t raiisfornmatioiis sunch as

(a) Z~ ~-1 ~

IThese t raiusforinat ions represent aI broad specrti iii of transformiations on a variable as call

he seen in Figures 9, 10 and( 11. .Note also that transformation (3a) and transformiation
(3c I cort aml the linear case as a special set of parameter vallies. Tile first transformion.11

(3a). is a positiv e weighting of all %-allties, withI large values weightted more t han simaIlI
values. Byv varvinig the - parameter, one can scale the effects of the weights fromi very
large for large -1 to very slight for small - . The second transformlation. (31)), applieIs
sinall itegati ye Weights for v-alties less t han 1. For values larger than I it allows for a wide
raiive of positive weighting schenmes as in transformation (3a). The third t ransforiiatioil.
(3c ), is similar to the st raight forward power transformation, (Figure 1), but withI more

p~arameters. Thus it allows for more fexibility and ii'creased curvature for smaller values
of the parameters. The difficult part with these transformat ions, as usual, is comipting

lie necessary expected values.
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